skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Feinstein, Adina D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract 3I/ATLAS is the third macroscopic interstellar object detected traversing the solar system. Since its initial discovery on UT 2025 July 1, hundreds of hours on a range of observational facilities have been dedicated to measuring the physical properties of this object. These observations have provided astrometry to refine the orbital solution, photometry to measure the color, a rotation period and secular light curve, and spectroscopy to characterize the composition of the coma. Here, we report precovery photometry of 3I/ATLAS as observed with NASA’s Transiting Exoplanet Survey Satellite (TESS). 3I/ATLAS was observed nearly continuously by TESS from UT 2025 May 7 to 2025 June 2. We use the shift-stack method to create deepstack images to recover the object. These composite images reveal that 3I/ATLAS has an average TESS magnitude ofTmag = 20.83 ± 0.05, 19.28 ± 0.05 and an absolute visual magnitude ofHV = 13.72 ± 0.35;12.52 ± 0.35, the latter being consistent with magnitudes reported in 2025 July. When coupled with recent Hubble Space Telescope images deriving a nucleus size ofR< 2.8 km (H> 15.4), our measurements suggest that 3I/ATLAS may have been active out at ∼6 au. Additionally, we extract a ∼20 day light curve and find no statistically significant evidence of a nucleus rotation period. Nevertheless, the data presented here are some of the earliest precovery images of 3I/ATLAS and may be used in conjunction with future observations to constrain the properties of our third interstellar interloper. 
    more » « less
    Free, publicly-accessible full text available September 11, 2026
  2. Small bodies are capable of delivering essential prerequisites for the development of life, such as volatiles and organics, to the terrestrial planets. For example, empirical evidence suggests that water was delivered to the Earth by hydrated planetesimals from distant regions of the Solar System. Recently, several morphologically inactive near-Earth objects were reported to experience significant nongravitational accelerations inconsistent with radiation-based effects, and possibly explained by volatile-driven outgassing. However, these “dark comets” display no evidence of comae in archival images, which are the defining feature of cometary activity. Here, we report detections of nongravitational accelerations on seven additional objects classified as inactive (doubling the population) that could also be explainable by asymmetric mass loss. A detailed search of archival survey and targeted data rendered no detection of dust activity in any of these objects in individual or stacked images. We calculate dust production limits of 10, 0.1 , and 0.1 kg s 1 for 1998 FR 11 , 2001 ME 1 , and 2003 RM with these data, indicating little or no dust surrounding the objects during the observations. This set of dark comets reveals the delineation between two distinct populations: larger, “outer” dark comets on eccentric orbits that are end members of a continuum in activity level of comets, and smaller, “inner” dark comets on near-circular orbits that could signify a different different population. These objects may trace various stages in the life cycle of a previously undetected, but potentially numerous, volatile-rich population that may have provided essential material to the Earth. 
    more » « less
  3. Abstract Stellar flares are short-duration (< hours) bursts of radiation associated with surface magnetic reconnection events. Stellar magnetic activity generally decreases as a function of both the age and Rossby number,R0, a measure of the relative importance of the convective and rotational dynamos. Young stars (<300 Myr) have typically been overlooked in population-level flare studies due to challenges with flare-detection methods. Here, we select a sample of stars that are members of 26 nearby moving groups, clusters, or associations with ages <300 Myr that have been observed by the Transiting Exoplanet Survey Satellite at 2 minute cadence. We identified 26,355 flares originating from 3160 stars and robustly measured the rotation periods of 1847 stars. We measure and find the flare frequency distribution slope,α, saturates for all spectral types atα∼ −0.5 and is constant over 300 Myr. Additionally, we find that flare rates for starstage= 50–250 Myr are saturated belowR0< 0.14, which is consistent with other indicators of magnetic activity. We find evidence of annual flare rate variability in eleven stars, potentially correlated with long-term stellar activity cycles. Additionally, we crossmatch our entire sample with the Galaxy Evolution Explorer and find no correlation between flare rate and far- and near-ultraviolet flux. Finally, we find the flare rates of planet-hosting stars are relatively lower than comparable, larger samples of stars, which may have ramifications for the atmospheric evolution of short-period exoplanets. 
    more » « less
  4. Abstract We report initial observations aimed at the characterization of a third interstellar object. This object, 3I/ATLAS or C/2025 N1 (ATLAS), was discovered on 2025 July 1 UT and has an orbital eccentricity ofe ∼ 6.1, perihelion ofq ∼ 1.36 au, inclination of ∼175°, and hyperbolic velocity ofV ∼ 58 km s−1. We report deep stacked images obtained using the Canada–France–Hawaii Telescope and the Very Large Telescope that resolve a compact coma. Using images obtained from several smaller ground-based telescopes, we find minimal light-curve variation for the object over a ∼4 day time span. The visible/near-infrared spectral slope of the object is 17.1% ± 0.2%/100 nm, comparable to other interstellar objects and primitive solar system small bodies (comets and D-type asteroids). Moreover, 3I/ATLAS will be observable through early 2025 September, then unobservable by Earth-based observatories near perihelion due to low solar elongation. It will be observable again from the ground in late 2025 November. Although this limitation unfortunately prohibits detailed Earth-based observations at perihelion when the activity of 3I/ATLAS is likely to peak, spacecraft at Mars could be used to make valuable observations at this time. 
    more » « less
    Free, publicly-accessible full text available August 13, 2026
  5. Abstract Cosmic rays produced by young stellar objects can potentially alter the ionization structure, heating budget, chemical composition, and accretion activity in circumstellar disks. The inner edges of these disks are truncated by strong magnetic fields, which can reconnect and produce flaring activity that accelerates cosmic radiation. The resulting cosmic rays can provide a source of ionization and produce spallation reactions that alter the composition of planetesimals. These reconnection and particle acceleration processes are analogous to the physical processes that produce flaring in and the heating of stellar coronae. Flaring events on the surface of the Sun exhibit a power-law distribution of energy, reminiscent of those measured for earthquakes and avalanches. Numerical lattice reconnection models are capable of reproducing the observed power-law behavior of solar flares under the paradigm of self-organized criticality. One interpretation of these experiments is that the solar corona maintains a nonlinear attractor—or “critical”—state by balancing energy input via braided magnetic fields and output via reconnection events. Motivated by these results, we generalize the lattice reconnection formalism for applications in the truncation region of magnetized disks. Our numerical experiments demonstrate that these nonlinear dynamical systems are capable of both attaining and maintaining criticality in the presence of Keplerian shear and other complications. The resulting power-law spectrum of flare energies in the equilibrium attractor state is found to be nearly universal in magnetized disks. This finding indicates that magnetic reconnection and flaring in the inner regions of circumstellar disks occur in a manner similar to the activity on stellar surfaces. These results, in turn, have ramifications for the spallation-driven injection of radionuclides in planetesimals, disk ionization, and the subsequent planetary formation process. 
    more » « less
  6. Abstract The characterization of young planets (<300 Myr) is pivotal for understanding planet formation and evolution. We present the 3–5μm transmission spectrum of the 17 Myr, Jupiter-size (R∼10R) planet, HIP 67522b, observed with JWST NIRSpec/G395H. To check for spot contamination, we obtain a simultaneousg-band transit with the Southern Astrophysical Research Telescope. The spectrum exhibits absorption features 30%–50% deeper than the overall depth, far larger than expected from an equivalent mature planet, and suggests that HIP 67522b’s mass is <20Mirrespective of cloud cover and stellar contamination. A Bayesian retrieval analysis returns a mass constraint of 13.8 ± 1.0M. This challenges the previous classification of HIP 67522b as a hot Jupiter and instead, positions it as a precursor to the more common sub-Neptunes. With a density of <0.10 g cm−3, HIP 67522 b is one of the lowest-density planets known. We find strong absorption from H2O and CO2(≥7σ), a modest detection of CO (3.5σ), and weak detections of H2S and SO2(≃2σ). Comparisons with radiative-convective equilibrium models suggest supersolar atmospheric metallicities and solar-to-subsolar C/O ratios, with photochemistry further constraining the inferred atmospheric metallicity to 3 × 10 solar due to the amplitude of the SO2feature. These results point to the formation of HIP 67522b beyond the water snowline, where its envelope was polluted by icy pebbles and planetesimals. The planet is likely experiencing substantial mass loss (0.01–0.03MMyr−1), sufficient for envelope destruction within a gigayear. This highlights the dramatic evolution occurring within the first 100 Myr of its existence. 
    more » « less
  7. Abstract Tidal heating on Io due to its finite eccentricity was predicted to drive surface volcanic activity, which was subsequently confirmed by the Voyager spacecraft. Although the volcanic activity in Io is more complex, in theory volcanism can be driven by runaway melting in which the tidal heating increases as the mantle thickness decreases. We show that this runaway melting mechanism is generic for a composite planetary body with liquid core and solid mantle, provided that (i) the mantle rigidity,μ, is comparable to the central pressure, i.e.,μ/(ρgRP) ≳ 0.1 for a body with densityρ, surface gravitational accelerationg, and radiusRP; (ii) the surface is not molten; (iii) tides deposit sufficient energy; and (iv) the planet has nonzero eccentricity. We calculate the approximate liquid core radius as a function ofμ/(ρgRP), and find that more than 90% of the core will melt due to this runaway forμ/(ρgRP) ≳ 1. From all currently confirmed exoplanets, we find that the terrestrial planets in the L 98-59 system are the most promising candidates for sustaining active volcanism. However, uncertainties regarding the quality factors and the details of tidal heating and cooling mechanisms prohibit definitive claims of volcanism on any of these planets. We generate synthetic transmission spectra of these planets assuming Venus-like atmospheric compositions with an additional 5%, 50%, and 98% SO2component, which is a tracer of volcanic activity. We find a ≳3σpreference for a model with SO2with 5–10 transits with JWST for L 98-59bcd. 
    more » « less
  8. Astronomers have found more than a dozen planets transiting stars that are 10–40 million years old1, but younger transiting planets have remained elusive. The lack of such discoveries may be because planets have not fully formed at this age or because our view is blocked by the protoplanetary disk. However, we now know that many outer disks are warped or broken2; provided the inner disk is depleted, transiting planets may thus be visible. Here we report observations of the transiting planet IRAS 04125+2902 b orbiting a 3-million-year-old, 0.7-solar-mass, pre-main-sequence star in the Taurus Molecular Cloud. The host star harbours a nearly face-on (30 degrees inclination) transitional disk3 and a wide binary companion. The planet has a period of 8.83 days, a radius of 10.7 Earth radii (0.96 Jupiter radii) and a 95%-confidence upper limit on its mass of 90 Earth masses (0.3 Jupiter masses) from radial-velocity measurements, making it a possible precursor of the super-Earths and sub-Neptunes frequently found around main-sequence stars. The rotational broadening of the star and the orbit of the wide (4 arcseconds, 635 astronomical units) companion are both consistent with edge-on orientations. Thus, all components of the system are consistent with alignment except the outer disk; the origin of this misalignment is unclear. 
    more » « less
  9. Abstract The recent inference of sulfur dioxide (SO2) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations1–3suggests that photochemistry is a key process in high-temperature exoplanet atmospheres4. This is because of the low (<1 ppb) abundance of SO2under thermochemical equilibrium compared with that produced from the photochemistry of H2O and H2S (1–10 ppm)4–9. However, the SO2inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.05 μm and, therefore, the detection of other SO2absorption bands at different wavelengths is needed to better constrain the SO2abundance. Here we report the detection of SO2spectral features at 7.7 and 8.5 μm in the 5–12-μm transmission spectrum of WASP-39b measured by the JWST Mid-Infrared Instrument (MIRI) Low Resolution Spectrometer (LRS)10. Our observations suggest an abundance of SO2of 0.5–25 ppm (1σrange), consistent with previous findings4. As well as SO2, we find broad water-vapour absorption features, as well as an unexplained decrease in the transit depth at wavelengths longer than 10 μm. Fitting the spectrum with a grid of atmospheric forward models, we derive an atmospheric heavy-element content (metallicity) for WASP-39b of approximately 7.1–8.0 times solar and demonstrate that photochemistry shapes the spectra of WASP-39b across a broad wavelength range. 
    more » « less
  10. Abstract Close-in giant exoplanets with temperatures greater than 2,000 K (‘ultra-hot Jupiters’) have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble Space Telescope (HST) and Spitzer Space Telescope1–3. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis3–12. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS13instrument on the JWST. The data span 0.85 to 2.85 μm in wavelength at an average resolving power of 400 and exhibit minimal systematics. The spectrum shows three water emission features (at >6σconfidence) and evidence for optical opacity, possibly attributable to H, TiO and VO (combined significance of 3.8σ). Models that fit the data require a thermal inversion, molecular dissociation as predicted by chemical equilibrium, a solar heavy-element abundance (‘metallicity’,$${\rm{M/H}}=1.0{3}_{-0.51}^{+1.11}$$ M/H = 1.0 3 0.51 + 1.11 times solar) and a carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside brightness temperature map, which shows a peak in temperature near the substellar point that decreases steeply and symmetrically with longitude towards the terminators. 
    more » « less